В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*7/17
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(AB*7/17)2+(4√
AB2-(AB*7/17)2=16*15
AB2(1-(7/17)2)=240
AB2(289/289-49/289)=240
AB2*240/289=240
AB2=289
AB=17
Ответ: AB=17
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 28, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Комментарии:
(2015-05-24 20:34:29) Администратор: Катя, мы AB2 вынесли за скобки.
(2015-05-24 20:20:41) Катя: почему на шестой строке в решении написано 1 вместо АВ? Поясните решение на шестой строчке)