В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*7/17
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(AB*7/17)2+(4√
AB2-(AB*7/17)2=16*15
AB2(1-(7/17)2)=240
AB2(289/289-49/289)=240
AB2*240/289=240
AB2=289
AB=17
Ответ: AB=17
Поделитесь решением
Присоединяйтесь к нам...
В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
От столба высотой 9 м к дому натянут провод, который крепится на высоте 3 м от земли (см. рисунок). Расстояние от дома до столба 8 м. Вычислите длину провода.
Сторона ромба равна 20, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Комментарии:
(2015-05-24 20:34:29) Администратор: Катя, мы AB2 вынесли за скобки.
(2015-05-24 20:20:41) Катя: почему на шестой строке в решении написано 1 вместо АВ? Поясните решение на шестой строчке)