В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*7/17
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(AB*7/17)2+(4√
AB2-(AB*7/17)2=16*15
AB2(1-(7/17)2)=240
AB2(289/289-49/289)=240
AB2*240/289=240
AB2=289
AB=17
Ответ: AB=17
Поделитесь решением
Присоединяйтесь к нам...
Синус острого угла A треугольника ABC равен . Найдите CosA.
Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь этого ромба.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 3 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 40° и 35°. Найдите больший угол параллелограмма.
Комментарии:
(2015-05-24 20:34:29) Администратор: Катя, мы AB2 вынесли за скобки.
(2015-05-24 20:20:41) Катя: почему на шестой строке в решении написано 1 вместо АВ? Поясните решение на шестой строчке)