Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №0BF928

Задача №340 из 1042
Условие задачи:

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.

Решение задачи:

OK перпендикулярен к касательной (по свойству касательной), т.е. угол между OK и касательной равен 90°.
Следовательно, /OKM=90°-83°=7°
Треугольник OMK - равнобедренный (т.к. OM и OK - радиусы окружности и, соответственно, равны друг другу).
По свойству равнобедренного треугольника /OKM=/OMK=7°
Ответ: /OMK=7°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2016-10-23 22:30:42) Администратор: Ольга, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-10-23 09:55:01) Ольга: На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=73°. Найдите угол NMB. Ответ дайте в градусах.
(2014-05-29 14:12:22) Администратор: Спасибо, номер изменен.
(2014-05-29 14:09:54) : у задачи новый номер - 0BF928

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Введите порядковый номер задачи для раздела 'ОГЭ, Математика.
Геометрия:' (от 1 до 1042)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика