ОГЭ, Математика. Геометрия: Задача №EB43A2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EB43A2

Задача №248 из 1084
Условие задачи:

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.

Решение задачи:

1) По условию задачи /BED=/EDB, следовательно треугольник BDE - равнобедренный (по свойству). По определению равнобедренного треугольника BE=BD. Смежные углы для /BED и /EDB тоже равны, /BDC=/BEA.
2) Рассмотрим треугольники ABE и CBD.
AE=CD (по условию),
BE=BD (согласно п.1),
/AEB=/CDB (из п.1),
следовательно эти треугольники равны (по первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №112015

В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.



Задача №584A28

В ромбе ABCD угол ABC равен 72°. Найдите угол ACD. Ответ дайте в градусах.



Задача №C9CB21

Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=83°. Ответ дайте в градусах.



Задача №EE99B1

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.



Задача №0D8723

В треугольнике ABC AB=BC=53, AC=56. Найдите длину медианы BM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика