Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №B6BD3C

Задача №243 из 1020
Условие задачи:

Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны", это утверждение верно, т.к. это один из признаков подобия.
2) "Сумма смежных углов равна 180°", это утверждение верно (по определению).
3) "Любая медиана равнобедренного треугольника является его биссектрисой", это утверждение неверно, т.к. по свойству равнобедренного треугольника, только медиана, проведенная к основанию, является и биссектрисой, и высотой.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2019-02-09 22:51:17) Администратор: Оксана, если в треугольниках равны все 3 угла, то два угла этих треугольников, тем более равны, поэтому эту утверждение верно.
(2019-02-09 12:55:32) Оксана: 1 утверждение неверно, так как первый признак подобия гласит, что треугольники могут быть подобны по 2ум равным углам. Все остальные вариации этого утверждения не являются верными.
(2014-04-30 16:44:21) Администратор: Вика, по первому признаку подобия, в ответе есть ссылка.
(2014-04-30 16:42:36) Вика: а почему 1 утверждение верно?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Введите порядковый номер задачи для раздела 'ОГЭ, Математика.
Геометрия:' (от 1 до 1020)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика