Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Проведем высоту
параллелограмма CO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sparal=AB*h=30
А площадь
трапеции равна произведению полусуммы оснований на высоту.
ED=DC/2 (по условию задачи).
DC=AB (по
свойству параллелограмма).
Следовательно ED=AB/2.
Тогда:
Ответ: 22,5
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.
Найдите площадь треугольника, изображённого на рисунке.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 50° соответственно.
Комментарии:
(2017-10-10 09:50:50) Администратор: Илья, AB+AB/2=(2AB)/2+AB/2=(3AB)/2
(2017-10-09 09:37:18) Илья: Я не понял только одно, где вы взяли цифру \"3\" когда подставляли в формулу?
(2017-02-08 23:51:36) Администратор: Алена, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-02-08 12:33:24) Алена: В параллелограме ABCD AE биссектриса угла А. Стороны параллелограмма АВ и ВС относятся как 4/9. АЕ пересекают диагональ ВД в точке К. Найти отношение ВК/КД