В треугольнике ABC угол C прямой, BC=6, cosB=0,3. Найдите AB.
По
определению косинуса cosB=BC/AB => AB=BC/cosB=6/0,3=20.
Ответ: AB=20.
Поделитесь решением
Присоединяйтесь к нам...
Центральный угол
AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 5.
Найдите площадь параллелограмма, изображённого на рисунке.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 36.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.
Комментарии: