Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №165C36

Задача №388 из 1042
Условие задачи:

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.

Решение задачи:

Рассмотрим четырехугольник PKBC.
PKBC вписан в окружность, следовательно выполняется условие: сумма противоположных углов четырехугольника равна 180° (условие того, что четырехугольник можно вписать в окружность).
Т.е. ∠PKB+∠BCP=180°
∠PKB+∠AKP=180° (т.к. это смежные углы).
Следовательно, ∠AKP=∠BCP
Рассмотрим треугольники ABC и AKP.
∠AKP=∠BCP (это мы выяснили чуть выше)
∠A - общий, тогда эти треугольники подобны (по признаку подобия).
Следовательно, KP/BC=AK/AC=AP/AB (из определения подобных треугольников).
Нас интересует равенство KP/BC=AK/AC
KP/BC=18/(1,2BC)
KP=18BC/(1,2BC)=15
Ответ: KP=15

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2017-03-30 23:00:10) Администратор: Анна, здравствуйте! Берется соотношение тех сторон, которые образуют равные углы в подобных треугольниках. Т.е. заметьте, что угол AKP = углу BCP, а не углу ABC. Поэтому и соотновшение строится именно так, как написано.
(2017-03-29 14:31:10) Анна: Здравствуйте. Почему AK/AC=AP/AB? Разве не должно быть AK/AB=AP/AC?
(2016-12-05 22:42:10) Администратор: Алиса, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-05 20:25:03) Алиса: В треугольнике со сторонами BC= 8 см,AC=12 см,AB=7 см. Точка D делит сторону AC в отношении 3:1 считая точке A. В треугольнике ABD и BDC вписана окружность. Найти расстояние между точками касания отрезка BD с этими окружностями.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Введите порядковый номер задачи для раздела 'ОГЭ, Математика.
Геометрия:' (от 1 до 1042)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика