ОГЭ, Математика. Геометрия: Задача №13AC23 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №13AC23

Задача №870 из 1087
Условие задачи:

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка L — середина стороны AB. Докажите, что DL — биссектриса угла ADC.

Решение задачи:

Рассмотрим треугольник ALD.
AL вдвое меньше AB (по условию задачи).
AD тоже вдвое меньше AB (по условию задачи), следовательно:
AL=AD
Т.е. данный треугольник равнобедренный.
По свойству равнобедренного треугольника ∠ADL=∠ALD
∠ALD=∠LDC (т.к. это накрест-лежащие углы).
Получается, что ∠ADL=∠LDC.
Следовательно DL - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №656C84

Площадь прямоугольного треугольника равна 9683/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №72DA6E

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.



Задача №5EB66F

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.



Задача №17195C

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Треугольник со сторонами 1, 2, 4 не существует.
3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.



Задача №0C344D

Площадь прямоугольного треугольника равна 83/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика