Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Проведем высоту
параллелограмма CO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sparal=AB*h=30
А площадь
трапеции равна произведению полусуммы оснований на высоту.
ED=DC/2 (по условию задачи).
DC=AB (по
свойству параллелограмма).
Следовательно ED=AB/2.
Тогда:
Ответ: 22,5
Поделитесь решением
Присоединяйтесь к нам...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.
Углы при одном из оснований трапеции равны 48° и 42°, а отрезки, соединяющие середины противоположных сторон трапеции равны 6 и 3. Найдите основания трапеции.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
Найдите площадь треугольника, изображённого на рисунке.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.
Комментарии:
(2017-10-10 09:50:50) Администратор: Илья, AB+AB/2=(2AB)/2+AB/2=(3AB)/2
(2017-10-09 09:37:18) Илья: Я не понял только одно, где вы взяли цифру \"3\" когда подставляли в формулу?
(2017-02-08 23:51:36) Администратор: Алена, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-02-08 12:33:24) Алена: В параллелограме ABCD AE биссектриса угла А. Стороны параллелограмма АВ и ВС относятся как 4/9. АЕ пересекают диагональ ВД в точке К. Найти отношение ВК/КД