ОГЭ, Математика. Геометрия: Задача №116D41 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №116D41

Задача №36 из 1087
Условие задачи:

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.

Решение задачи:

По условию задачи ВМ - медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
SABК=SAKM=(SABM)/2=(SABC)/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC. SCKP=(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)SCKB=(2/12)SABC =(1/6)SABC.
SKPCM=SCMK+SCKP=(SABC)/4+(1/6)SABC=(5/12)SABC. Следовательно отношение SKPMC к SAMK равно ((5/12)SABC)/(1/4)SABC=5/3.
Ответ: SKPMC/SAMK=5/3.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EE3D1E

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 155°. Найдите угол C. Ответ дайте в градусах.



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.



Задача №C42955

В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.



Задача №225CE3

В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.



Задача №5E3594

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.

Комментарии:


(2015-05-24 11:47:05) Администратор: Олеся, высота не обязательно проходит через сам треугольник, она может лежать и вне треугольника, главное, чтобы она была перпендикулярна стороне.
(2015-05-24 07:29:55) Олеся: Я не понимаю,как h может быть высотой для СКР?
(2015-01-23 23:18:12) Администратор: Всеволод, обязательно изучу Ваш вариант и, если он окажется проще, то обязательно добавлю на сайт.
(2015-01-23 13:29:20) Всеволод: Предлагаю вариант без проведения ME. Может кому-то будет проще. Пусть x=S(ABK)=S(AKM)=S(KMC)=S(KBC) Пусть y=S(KBP), тогда S(KPC)=S(KBC)-S(KBP)=x-y Отношение их площадей S(KBP)/S(KPC)=y/(x-y) Отношение площадей S(ABP)/S(APC) будет таким же, как и S(KBP)/S(KPC), ведь у них те же основания BP и PC, только общая вершина уже в А, а не в точке K. S(ABP)/S(APС)=S(KBP)/S(KPC) Набираем площади ABP и APС в наших переменных: S(ABP)/S(APС)=(x+y)/(x+x+(x-y)) Равенство отношений площадей: (x+y)/(3x-y)=y/(x-y), откуда находим x=3y Искомое отношение площадей в наших переменных: S(KPCM)/S(AMK)=((x-y)+x)/x=((3y-y)+3y)/3y=5/3
(2014-09-24 00:20:05) : спасибо
(2014-09-24 00:20:05) : спасибо

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика