В трапеции ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Обратите внимание, рисунок не соответствует условию задачи (углы на рисунке заведомо меньше, чем в условии).
/ADC=/BDA+/BDC=67°+28°=95°.
Трапеция ABCD -
равнобедренная (т.к. AB=CD), следовательно, по
свойству равнобедренной трапеции, /BAD=/ADC=95°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно /ABC+/BCD=360°-95°-95°=170°
По тому же
свойству равнобедренной трапеции /ABC=/BCD, тогда каждый из этих углов равен 170°/2=85°
В любой трапеции основания параллельны (по
определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что /CBD=/BDA=67° (т.к. это
внутренние накрест лежащие углы).
Тогда /ABD=/ABC-/CBD=85°-67°=18°
Ответ: /ABD=18°
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 32√
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 62°, 54° и 64°.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 148°, угол ABC равен 132°. Найдите угол ACB. Ответ дайте в градусах.
Комментарии: