В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Вариант 1 (предложил пользователь Всеволод)
Продолжим стороны AB и CD до пересечения в точке G.
BC || AD (по
определению трапеции).
AD вдвое больше BC (по условию задачи), следовательно:
BC -
средняя линия для треугольника AGD.
Тогда, CD=CG=AD/2 (по
теореме о средней линии).
Получается, что AD=DG, т.е. треугольник AGD -
равнобедренный.
Следовательно, ∠AGD=∠GAD=x (
свойство равнобедренного треугольника)
По
теореме о сумме углов треугольника:
180°=∠AGD+∠GAD+∠ADG
180°=x+x+60°
120°=2x
x=60°, т.е. все углы треугольника ADG равны 60°, следовательно данный треугольник
равносторонний.
Следовательно, AG=DG, тогда и AB=CD, т.е.
трапеция ABCD
равнобедренная.
Проведем
высоты BE и CF как показано на рисунке.
AD=AE+EF+FD, EF=BC=6 (так как BCFE -
прямоугольник), AE=FD=y (так как трапеция равнобедренная).
12=y+6+y
y=3
По
теореме Пифагора CD2=CF2+FD2
62=CF2+32
CF2=27, CF=3√
SABCD=((BC+AD)/2)*CF=((6+12)/2)*3√
SABCD=27√
Ответ: SABCD=27√
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Радиус вписанной в квадрат окружности равен 2√2. Найдите радиус окружности, описанной около этого квадрата.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
Комментарии:
(2015-03-15 18:10:35) Администратор: Всеволод, согласен с Вами!
(2015-03-15 17:49:50) Всеволод: Уважаемый Администратор! Спасибо Вам за ведение такого полезного ресурса. Спасибо и за оценку моего дополнения. На мой взгляд, чем больше разных подходов, тем шире понимание у всех интересующихся.
(2015-03-14 22:00:48) Администратор: Всеволод, очень неплохой вариант! В скором времени опубликую по Вашим именем.
(2015-03-14 18:21:37) Всеволод: Предлагаю чуть другой вариант первой половины решения. Продолжим стороны AB и CD до пересечения в точке G. Для треугольника ADG основание трапеции BC (BC=AD/2) будет средней линией, значит CD=CG=AD/2, отсюда AD=DG, а угол между ними 60 градусов, значит треугольник ADG равносторонний, а тогда трапеция равнобедренная.