ОГЭ, Математика. Геометрия: Задача №EE59B5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем отрезок B1C1 и рассмотрим треугольники EB1C и EC1B.
∠C1EB=∠B1EC (так как они вертикальные).
∠EB1C=∠EC1B=90° (так как BB1 и CC1 - высоты).
По первому признаку подобия треугольников, рассматриваемые треугольники подобны.
Следовательно:
EB1/EC1=EC/EB
Рассмотрим треугольники EС1B1 и ECB
∠BEC=∠B1EC1 (так как они вертикальные).
Как мы выяснили ранее:
EB1/EC1=EC/EB
Умножим левую и правую части равенства на EC1, получим:
EB1=EC1*EC/EB
Разделим левую и правую части на EC, получаем:
EB1/EC=EC1/EB
Получается, что по второму признаку подобия треугольников, треугольники EС1B1 и ECB подобны.
Следовательно, по определению, углы BB1C1 и BCC1 равны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №151151

В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.



Задача №A002C2

В равнобедренной трапеции основания равны 3 и 5, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №BBA461

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.



Задача №B711E6

В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ равны.



Задача №072CFE

На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика