В трапеции ABCD AB=CD, ∠BDA=54° и ∠BDC=33°. Найдите угол ABD. Ответ дайте в градусах.
∠ADC=∠BDA+∠BDC=54°+33°=87°.
Трапеция ABCD -
равнобедренная (т.к. AB=CD), следовательно, по
свойству равнобедренной трапеции, ∠BAD=∠ADC=87°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно ∠ABC+∠BCD=360°-87°-87°=186°
По тому же
свойству равнобедренной трапеции ∠ABC=∠BCD, тогда каждый из этих углов равен 186°/2=93°
В любой трапеции основания параллельны (по
определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что ∠CBD=∠BDA=54° (т.к. это
внутренние накрест лежащие углы).
Тогда ∠ABD=∠ABC-∠CBD=93°-54°=39°
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны
AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.
В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Комментарии:
(2017-10-04 18:10:11) Администратор: Без вопроса, нет ответа.
(2017-10-03 15:43:18) : в трапеции авсд известно что ав сд угол вда 30 и угол вдс 110