Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №703 из 939. Номер задачи на WWW.FIPI.RU - EB7D4F


Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.

Решение задачи:

Чтобы четырехугольник можно было вписать в окружность, должно выполняться условие:
∠DAB+∠BCD=∠ABC+∠CDA=180° (по третьему свойству описанной окружности ).
∠ADM является смежным по отношению к ∠CDA, следовательно: 180°=∠ADM+∠CDA
180°=∠ABC+∠CDA (это мы установили ранее).
Получается, что ∠ADM=∠ABC
∠DAM является смежным по отношению к ∠DAB, следовательно:
180°=∠DAM+∠DAB
180°=∠BCD+∠DAB (это мы установили ранее).
Получается, что ∠DAM=∠BCD
∠M - общий для треугольников MBC и MDA.
Тогда, по первому признаку подобия, данные треугольники подобны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 939)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика