Радиус окружности с центром в точке O равен 50, длина хорды AB равна 96 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Проведем отрезок OB как показано на рисунке.
Расстояние от
хорды AB до параллельной ей
касательной k обозначено как CD.
CD=OC+OD, OC - это радиус окружности, найдем OD.
По условию задачи k||AB. CD перпендикулярен k (по
свойству касательной), тогда CD перпендикулярен и AB (т.к. CD - секущая для параллельных прямых, и внутренние
накрест-лежащие углы равны), значит треугольник OBD
прямоугольный.
DB=AB/2=96/2=48 (по
второму свойству хорды)
OB равен радиусу окружности.
Тогда по
теореме Пифагора:
OB2=OD2+DB2
502=OD2+482
2500=OD2+2304
OD2=2500-2304=196
OD=14
CD=OC+OD=50+14=64
Ответ: 64
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Площадь круга равна 90. Найдите площадь сектора этого круга, центральный угол которого равен 60°.
Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 5 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1 м?
Комментарии: