Из вершины прямого угла C треугольника
ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По
определению tgBAC=CB/AC=4/3 => AC=3*CB/4=0,75*CB.
По
теореме Пифагора AB2=AC2+CB2
AB2=(0,75*CB)2+CB2
AB2=1,5625*CB2
AB=1,25*CB
Необходимо вычислить CB.
По
теореме о сумме углов треугольника для треугольника ABC:
/ABC=180°-90°-/BAC
Для треугольника BCP:
/ABC=180°-90°-/BCP
Следовательно, /BAC=/BCP.
Рассмотрим треугольник BCP.
По
определению tgBCP=BP/CP=4/3 => CP=3*BP/4=0,75*BP.
По
теореме Пифагора CB2=CP2+BP2
CB2=(0,75*BP)2+BP2
CB2=1,5625*BP2
CB=1,25*BP
BP=0,8*CB
r=(BP+CP-CB)/2
2*r=BP+0,75*BP-CB
2*8=1,75*BP-CB
16=1,75*0,8*CB-CB
16=0,4*CB
CB=40
Вычислив CB, мы можем вычислить AB и AC, указанные выше:
AB=1,25*CB=1,25*40=50
AC=0,75*CB=0,75*40=30
R=(AC+CB-AB)/2, тогда получаем:
R=(30+40-50)/2=10.
Ответ: R=10.
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.
Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
3) Площадь круга меньше квадрата длины его диаметра.
Комментарии:
(2015-10-13 13:48:55) Администратор: Светлана, да, видимо к этому задача и сводится, но я не могу найти теорему (определение, свойство), в котором бы утверждалось, что в подобных треугольниках отношение сторон равно отношению радиусов вписанных окружностей. А если это нигде не доказано, то принимать это как данность нельзя. Может быть Вы подскажите, где искать?
(2015-10-11 19:13:12) Светлана: проще решить задачу через подобие треугольников:АСВ и СРВ,найти синусА (чрез тангенс найти косинус,затем синус)отношение подобных сторон равно синусу= отношение радиусов