ОГЭ, Математика. Геометрия: Задача №279FA8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №279FA8

Задача №25 из 1087
Условие задачи:

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?

Решение задачи:

Рисунок,предложенный в задаче можно условно перерисовать в виде треугольников.
h1 - изначальная высота длинного плеча журавля.
h2 - конечная высота длинного плеча журавля.
h3 - изначальная высота короткого плеча журавля.
h4 - конечная высота короткого плеча журавля.
h3-h4=0,5 метра (по условию задачи).
Нам надо найти:
h1-h2=?.
Рассмотрим треугольники AOE и COG.
1) ∠AOE=∠COG, т.к. они вертикальные.
2) ∠AEO=∠CGO=90°
Следовательно, треугольники AOE и COG подобны (по первому признаку подобия). Отсюда следует, что h1/OA=h3/OC.
Треугольники BOF и DOI тоже подобны (аналогично предыдущим треугольникам).
Тогда:
h2/OB=h4/OD
OA=OB и OC=OD (так как длины плеч журавля не меняются), тогда:
h2/OA=h4/OC
Вычтем из первого равенства второе:
h1/OA-h2/OA=h3/OC-h4/OC.
(h1-h2)/OA=(h3-h4)/OC.
(h1-h2)/6=0,5/2.
h1-h2=6*0,5/2=1,5.
Ответ: 1,5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E374D6

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №F5E39D

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.



Задача №36727A

В треугольнике ABC угол C равен 90°, BC=8, AB=10. Найдите cosB.



Задача №45BF27

Площадь прямоугольного треугольника равна 983/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №52C267

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Комментарии:


(2015-05-21 21:34:00) Елена: Опускаем перпендикуляры из С на ВD и из А на ВD. Полученные треугольники подобны, т.к. проведённые перпендикуляры параллельны друг другу. Дальше составляем пропорцию и находим неизвестный перпендикуляр.
(2015-03-14 13:23:46) Николай: А ещё можно на глаз определить, по клеточкам))

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика