Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.
Рассмотрим каждое утверждение:
1) "Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны", это утверждение верно, т.к. это один из
признаков подобия.
2) "Сумма смежных углов равна 180°", это утверждение верно (по
определению).
3) "Любая медиана равнобедренного треугольника является его биссектрисой", это утверждение неверно, т.к. по
свойству равнобедренного треугольника, только
медиана, проведенная к основанию, является и
биссектрисой, и
высотой.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.
В треугольнике ABC известно, что ∠BAC=62°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=41°. Найдите угол NMB. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.
Комментарии:
(2019-02-09 22:51:17) Администратор: Оксана, если в треугольниках равны все 3 угла, то два угла этих треугольников, тем более равны, поэтому эту утверждение верно.
(2019-02-09 12:55:32) Оксана: 1 утверждение неверно, так как первый признак подобия гласит, что треугольники могут быть подобны по 2ум равным углам. Все остальные вариации этого утверждения не являются верными.
(2014-04-30 16:44:21) Администратор: Вика, по первому признаку подобия, в ответе есть ссылка.
(2014-04-30 16:42:36) Вика: а почему 1 утверждение верно?