В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AB*BC*cos∠ABC
142=82+102-2*8*10*cos∠ABC
196=64+100-160cos∠ABC
196-64-100=-160cos∠ABC
32=-160cos∠ABC
cos∠ABC=32/(-160)=-0,2
Ответ: -0,2
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /ACB=70° (см. рисунок). Найдите величину угла AOB (в градусах).
В треугольнике со сторонами 15 и 3 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Периметр треугольника равен 33, одна из сторон равна 7,
а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
Комментарии: