В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AB*BC*cos∠ABC
142=82+102-2*8*10*cos∠ABC
196=64+100-160cos∠ABC
196-64-100=-160cos∠ABC
32=-160cos∠ABC
cos∠ABC=32/(-160)=-0,2
Ответ: -0,2
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.
Синус острого угла A треугольника ABC равен . Найдите CosA.
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
Комментарии:
(2021-10-20 17:47:59) Администратор: Вася, Я не помогаю решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и я ее обязательно добавлю.
(2021-10-20 17:19:23) Вася: Петя и Вася ездят на велосипедах по кругу с постоянными скоростями. Скорость Пети равна 8 км/ч, а скорость Васи — 10 км/ч. Вначале они ехали в разные стороны (Петя — по часовой стрелке, а Вася — против), а затем Петя изменил направление движения (начал двигаться против часовой стрелки) и одновременно увеличил свою скорость вдвое. После этого велосипедисты стали встречаться в k раз реже. Найдите k.
(2021-10-20 17:10:03) Администратор: Екатерина, Я не помогаю решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и я ее обязательно добавлю.
(2021-10-20 16:54:34) Екатерина : Для треугольника ABC известно следующее: AB=12, BC=10, ∠ABC=120∘. Найдите R2, где R — радиус наименьшего круга, в который можно поместить этот треугольник.