Периметр треугольника равен 54, одна из сторон равна 15,
а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=54/2=27
S=r*p=1*27=27
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм — прямоугольник.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=44, MN=24. Площадь треугольника ABC равна 121. Найдите площадь треугольника MBN.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 5 м. Найдите длину троса.
Синус острого угла A треугольника ABC равен . Найдите CosA.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
Комментарии:
(2022-12-27 19:06:59) Алина: Радиос окружности вписанной в равнобедренную трапецию равен 14 найдите высоту этой трапеции
(2018-03-04 17:21:28) Администратор: В данной задача она не нужна. Обычно, авторы для одного и того же условия придумывают различные вопросы. Поэтому условие получается более универсальным и с избыточными данными.
(2018-03-03 22:54:08) : Зачем нужна была сторона 15