Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.
Проведем высоту
трапеции (красный отрезок). Высота перпендикулярна обоим основаниям (по определению).
Проведем радиусы окружности к обоим основаниям (синие отрезки).
Очевидно, что радиусы, высота и основания образуют прямоугольник, следовательно, радиусы образуют диаметр, который равен высоте.
h=D=2R=2*20=40.
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.
Найдите тангенс угла
AOB.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.
Комментарии:
(2021-05-25 11:19:48) рината: найдите площадь изображенной на клетчатой бумаге с размером клетки 2х2 см.