Постройте график функции y=x2-5|x|+4. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
В данной функции присутствует
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x2-5x+4, при x≥0
y=x2-5(-x)+4, при x<0
y=x2-5x+4, при x≥0
y=x2+5x+4, при x<0
Рассмотрим и построим график для каждой подфункции на определенном им диапазонах и объединим их.
График обеих подфункций - парабола, при чем, ветви параболы направлены вверх (так как коэффициент "а" больше нуля).
Для первой подфункции (красная):
X | 0 | 1 | 2 | 3 | 4 |
Y | 4 | 0 | -2 | -2 | 0 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 4 | 0 | -2 | -2 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Найдите значение выражения (2+√3)2+(2-√3)2.
При каких значениях р вершины парабол у=х2+4рх-1 и у=-х2+6рх-р расположены по разные стороны от оси х?
Найдите значение выражения (y+7)2-y(y-6) при y=-1/20.
Найдите значение выражения √
1) 2
2) 4√
3) 2√
4) 16
Решите уравнение x3=x2+6x.
Комментарии: