Постройте график функции y=x2-5|x|+4. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
В данной функции присутствует
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x2-5x+4, при x≥0
y=x2-5(-x)+4, при x<0
y=x2-5x+4, при x≥0
y=x2+5x+4, при x<0
Рассмотрим и построим график для каждой подфункции на определенном им диапазонах и объединим их.
График обеих подфункций - парабола, при чем, ветви параболы направлены вверх (так как коэффициент "а" больше нуля).
Для первой подфункции (красная):
X | 0 | 1 | 2 | 3 | 4 |
Y | 4 | 0 | -2 | -2 | 0 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 4 | 0 | -2 | -2 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение (x2-25)2+(x2+2x-15)2=0.
Найдите значение выражения при a=0,5, b=√
Значение какого из выражений является числом рациональным?
1) √
2) (√
3) √
4) √
Найдите значение выражения
1) 78400
2) 70
3) 280
4) √
Решите уравнение x3=x2+6x.
Комментарии: