Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Рассмотрим каждое утверждение.
1) "
Биссектриса
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, по
свойству равнобедренного треугольника - такая
биссектриса является и медианой, и высотой, следовательно, она перпендикулярна основанию.
2) "Диагонали
ромба точкой пересечения делятся пополам", это утверждение верно, т.к. это утверждение является
свойством параллелограмма, а
ромб - это тоже
параллелограмм.
3) "Из двух хорд окружности больше та, середина которой находится дальше от центра окружности", это утверждение неверно. Диаметр - это наибольшая
хорда, следовательно, чем центр хорды ближе к центру окружности, тем хорда больше.
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=17 и MB=19. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Комментарии: