ОГЭ, Математика. Геометрия: Задача №AEA79E | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №AEA79E

Задача №187 из 1087
Условие задачи:

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.

Решение задачи:

По условию задачи ВМ - медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
SABК=SAMK=(SABM)/2=(SABC)/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и BКР. Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC. SBKP=(1/2)*h*BP=(1/2)*h*(1/3)*ВС=(1/3)*(1/2)*h*BC=(1/3)SCKB=(1/12)SABC.
Следовательно отношение SBKP к SAMK равно (1/12)/(1/4)=1/3.
Ответ: SBKP/SAMK=1/3.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №17DF0C

Радиус вписанной в квадрат окружности равен 142. Найдите диагональ этого квадрата.



Задача №9C5C4D

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=27. Площадь треугольника ABC равна 96. Найдите площадь треугольника MBN.



Задача №04ECFA

На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=40, BC=45 и CD=24.



Задача №D2652B

В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №8EAAA5

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика