Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Рассмотрим каждое утверждение.
1) "Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части". По
свойству равнобедренного треугольника, такая
биссектриса является медианой. А медиана, по
определению, делит сторону пополам. Следовательно, это утверждение верно.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Нет такого
свойства.
3) "Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу", это утверждение верно, по
определению.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырёхугольника ABMN.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=38°. Найдите угол NMB. Ответ дайте в градусах.
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.
Сторона равностороннего треугольника равна 2√
Комментарии:
(2017-04-30 22:07:28) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-04-27 13:09:48) : Число кустов сирени в парке относится к числу кустов жасмина как 17 к 33 сколько процентов кустов парке составляет кусты сирени