Сторона квадрата равна 40√2. Найдите радиус окружности, описанной около этого квадрата.
Проведем отрезки из центра
квадрата к двум его углам, как на рисунке.
Заметим, что:
1) Эти отрезки и являются радиусами окружности.
2) Получившийся треугольник является
прямоугольным (по свойству квадрата).
Тогда мы можем применить
теорему Пифагора (пусть сторона квадрата - это "а"):
a2=R2+R2
a2=2R2
(40√2)2=2R2
По первому правилу действий со степенями:
402*(√2)2=2R2
402*2=2R2 |:2
402=R2
40=R
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 120°, AB=22√3. Найдите радиус окружности, описанной около этого треугольника.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
ABCDEFGHIJ – правильный десятиугольник. Найдите угол IBJ. Ответ дайте в градусах.
Лестницу длиной 2 м прислонили к дереву.
На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на
1,2 м?
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=17, AC=51, NC=32.
Комментарии: