Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники
подобны", это утверждение верно по
признаку подобия треугольников.
2) "Смежные углы равны", это утверждение неверно. По
определению, сумма смежных углов равна 180°, поэтому они будут равны только в одном случае, когда равны 90 градусам. В остальных случаях, смежные углы не равны.
3) "Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой", это утверждение верно. Это
свойство равнобедренного треугольника.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что треугольники BEF и DFE равны.
Один из углов прямоугольной трапеции равен 121°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
Площадь параллелограмма
ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Комментарии: