Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).
По условию /BOC=110°, этот угол является
центральным, соответственно дуга ВC тоже равна 110°. /BAC - является
вписанным углом и равен половине дуги, на которую опирается (по теореме о вписанном угле). Соответственно, 110/2=55.
Ответ: /BAC=55°.
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АEB и BDC тоже равны. Докажите, что треугольник АВС — равнобедренный.
Площадь прямоугольного треугольника равна 50√
В треугольнике ABC угол C равен 45°, AB=6√
Комментарии:
(2021-09-28 11:08:19) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2021-04-29 07:48:56) : AB - диаметр окружности с центром в точке O. Если A (8, -3), B (-2, -5) найти координаты центра круга Напишите уравнение круга согласно пункту а).