Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=60°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 60°*2=120°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=120°.
Ответ: /BOC=120°.
Поделитесь решением
Присоединяйтесь к нам...
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=24, CM=15. Найдите AO.
В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
Найдите площадь трапеции, изображённой на рисунке.
Найдите площадь трапеции, изображённой на рисунке.
Комментарии: