Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
3) Площадь круга меньше квадрата длины его диаметра.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны", это утверждение неверно, т.к. не соответствует ни одному из
признаков равенства треугольников.
2) "Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб", это утверждение неверно, т.к. полностью не соответствует ни одному
свойству ромба. Например, четырехугольник, изображенный на рисунке, его диагонали перпендикулярны, но очевидно, что это не ромб.
3) "Площадь круга меньше квадрата длины его диаметра". Прощадь круга равна ΠR2, или ΠD2/4. Число Π (Пи) равно, приблизительно, 3,14. Тогда Sкруга=0,785D2. А это, конечно меньше, чем D2. Утверждение верно
Поделитесь решением
Присоединяйтесь к нам...
Основание AC равнобедренного треугольника ABC равно 16. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=88 и BC=BM. Найдите AH.
В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D.
Найдите CD.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Комментарии:
(2018-03-22 13:40:38) Администратор: Лихт, конечно. Квадрат длины диаметра - это площадь квадрата, в который можно вписать этот круг. Естественно, площадь вписанного круга меньше площади квадрата.
(2018-03-19 11:11:58) Лихт: площадь круга меньше квадрата длины его диаметра ?