Сторона ромба равна 26, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Рассмотрим треугольник АВС, этот треугольник
прямоугольный (по условию задачи). ∠A=60°, следовательно по
теореме о сумме углов треугольника ∠АВС = 180°-90°-60°=30°. По
свойству прямоугольного треугольника АС=АВ/2=26/2=13. Следовательно вторая половина стороны ромба = 26-13=13. Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: 13
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен
90°, то такой ромб — квадрат.
Найдите площадь квадрата, если его диагональ равна 1.
Найдите угол ABC . Ответ дайте в градусах.
Комментарии:
(2017-11-03 00:08:26) Администратор: Елена, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-10-23 22:02:17) елена: . Площадь ромба равна 18, а периметр равен 36. Найдите высоту ромба.