Постройте график функции y=2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
2x+4x-x2, при x≥0
2x+4(-x)-x2, при x<0
6x-x2, при x≥0
-2x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=6x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | 5 | 8 | 9 | 8 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 1 | 0 | -3 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k<0, b>0
В) k>0, b<0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-x2+2x+5
Б) y=x2+2x-5
В) y=-x2-2x+5
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции .
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+0,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: