Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-5x-x, при x≥0
x2-5(-x)-x, при x<0
x2-6x, при x≥0
x2+4x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-6x, при x≥0 (красный график)
X | 0 | 2 | 4 | 6 |
Y | 0 | -8 | -8 | 0 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -3 | -4 | -3 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) Б)
В)
ФОРМУЛЫ
1) y=x2-7x+9
2) y=-x2-7x-9
3) y=-x2+7x-9
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наибольшее значение функции равно 3
2) Функция убывает на промежутке (-∞;1]
3) ƒ(x)>0 при -1<x<3
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: