Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=x2+6,25
y=kx
kx=x2+6,25
0=x2-kx+6,25
Найдем корни этого
уравнения:
D=(-k)2-4*1*6,25=k2-25
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-25=0
k2=25
k1=5
k2=-5
Получаем функции:
y=x2+6,25
y=5x
y=-5x
построим графики по точкам:
y=x2+6,25 (красный)
X | -2 | -1 | 0 | 1 | 2 |
Y | 10,25 | 7,25 | 6,25 | 7,25 | 10,25 |
X | -1 | 0 | 1 |
Y | -5 | 0 | 5 |
X | -1 | 0 | 1 |
Y | 5 | 0 | -5 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(x)<0 при -1<x<5
2) Функция возрастает на промежутке [2; +∞)
3) Наименьшее значение функции равно -5
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-2 2) y=x-2 3) y=-2x |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
y=x|x|-|x|-2x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) | ![]() |
Б) | ![]() |
В) | ![]() |
ФОРМУЛЫ 1) y=-1/4x 2) y=4/x 3) y=-4/x 4) y=1/4x |
Комментарии: