ОГЭ, Математика. Функции: Задача №7919B9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Функции: Задача №7919B9

Задача №204 из 287
Условие задачи:

Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.

Решение задачи:

Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=x2+6,25
y=kx
kx=x2+6,25
0=x2-kx+6,25
Найдем корни этого уравнения:
D=(-k)2-4*1*6,25=k2-25
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-25=0
k2=25
k1=5
k2=-5
Получаем функции:
y=x2+6,25
y=5x
y=-5x
построим графики по точкам:
y=x2+6,25 (красный)

X -2 -1 0 1 2
Y 10,25 7,25 6,25 7,25 10,25
y=5x (синий)
X -1 0 1
Y -5 0 5
y=-5x (зеленый)
X -1 0 1
Y 5 0 -5
Ответ: k1=5, k2=-5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9C72AE

Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.



Задача №ABA02D

Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.



Задача №5A6286

Постройте график функции

Определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.



Задача №4100F9

Известно, что графики функций y=-x2+p и y=-4x+5 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.



Задача №D28F33

Постройте график функции
y=|x2-x-2|.
Какое наибольшее число общих точек может иметь график данной функции с прямой, параллельной оси абсцисс?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Решение квадратного уравнения с помощью дискриминанта:
Для нахождения корней квадратного уравнения ax2+bx+c=0 в общем случае следует пользоваться приводимым ниже алгоритмом:
1) Вычислить значение дискриминанта квадратного уравнения:
D=b2-4ac
2) Вычислить корни уравнения:
x1,2=(-b±D)/(2a)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика