Баржа прошла по течению реки 40 км и, повернув обратно, прошла ещё 30 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
Введем обозначения:
v - собственная скорость баржи.
v+5 - скорость баржи по течению.
v-5 - скорость баржи против течения.
t1 - время движения баржи по течению.
t2 - время движения баржи против течения.
Тогда получаем:
t1=40/(v+5)
t2=30/(v-5)
t1+t2=5
Подставляем значения t1 и t2 в последнее уравнение:
40v-200+30v+150=5
(v+5)(v-5)
70v-50=5(v2-52) - разделим левую и правую части уравнения на 5
14v-10=v2-52
0=v2-25-14v+10
v2-14v-15=0
Решим это
квадратное уравнение через
дискриминант:
D=(-14)2-4*1*(-15)=196+60=256
v1=(-(-14)+16)/(2*1)=(14+16)/2=30/2=15 км/ч
v2=(-(-14)-16)/(2*1)=(14-16)/2=-2/2=-1 км/ч
Так как скорость отрицательной быть не может, то:
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Товар на распродаже уценили на 40%, при этом он стал стоить 630 р. Сколько рублей стоил товар до распродажи?
Государству принадлежит 60% акций предприятия, остальные акции принадлежат частным лицам. Общая прибыль предприятия после уплаты налогов за год составила 10 млн руб. Какая сумма (в рублях) из этой прибыли должна пойти на выплату частным акционерам?
На координатной прямой отмечено число a.
Расположите в порядке возрастания числа a-1, 1/a, a.
1) a, 1/a , a-1
2) a, a-1, 1/a
3) a-1, a, 1/a
4) 1/a, a-1, a
Найдите наименьшее значение x, удовлетворяющее системе неравенств
Из пунктов А и В, расстояние между которыми 19 км, одновременно навстречу друг другу вышли два туриста и встретились в 10 км от В. Турист, шедший из А, сделал в пути получасовую остановку. Найдите скорость туриста, шедшего из В, если известно, что он шёл со скоростью, на 1 км/ч меньшей, чем турист, шедший из А.
Комментарии: