Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
По условию задачи
геометрическая прогрессии задана условием: bn+1=3bn,
следовательно
b2=3b1, т.е. q=3.
Найдем
сумму:
S5=(b1(1-q5))/(1-q)=(-7(1-35))/(1-3)=(-7(1-243))/(1-3)=(-7*(-242))/(-2)=-7*121=-847
Ответ: b5=-847
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии:
…; -3; x; -27; -81; …
Найдите x.
Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите её шестнадцатый член.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?
Арифметическая прогрессия (an) задана условиями:
a1=48, an+1=an-17.
Найдите сумму первых семи её членов.
Комментарии: