Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
По условию задачи
геометрическая прогрессии задана условием: bn+1=3bn,
следовательно
b2=3b1, т.е. q=3.
Найдем
сумму:
S5=(b1(1-q5))/(1-q)=(-7(1-35))/(1-3)=(-7(1-243))/(1-3)=(-7*(-242))/(-2)=-7*121=-847
Ответ: b5=-847
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 160. Найдите первые три члена этой прогрессии.
Дана арифметическая прогрессия: -7; -4; -1; … . Найдите сумму первых шестидесяти её членов.
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
В геометрической прогрессии сумма первого и второго членов равна 200, а сумма второго и третьего членов равна 50. Найдите первые три члена этой прогрессии.
Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых шестидесяти её членов.
Комментарии: