ОГЭ, Математика. Числовые последовательности: Задача №ADC519 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 4 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=-124*21=-248 (из условия задачи). А q=2.
Тогда S4=-246*(1-24)/(1-2)=-248*(1-16)/(-1)=-248*15=-3720
Ответ: S4=-3720

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №288E24

Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.



Задача №BFB534

Последовательность задана формулой an=34/(n+1). Сколько членов этой последовательности больше 6?



Задача №75ED29

Геометрическая прогрессия задана условием bn=-77*2n. Найдите сумму первых её 5 членов.



Задача №1617B1

Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.



Задача №C61C01

Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика