Последовательность задана формулой an=34/(n+1). Сколько членов этой последовательности больше 6?
Для решения этой задачи надо решить неравенство:
34/(n+1)>6
34>6(n+1)
34>6n+6
28>6n
14>3n
14/3>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 4. Таким образом получается, что при n=1, 2, 3 и 4 an будет больше 6.
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), в которой a3=6,9, a16=26,4.
Найдите разность прогрессии.
Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.
Выписано несколько последовательных членов арифметической прогрессии:
…; -9; x; -13; -15; …
Найдите x.
Дана арифметическая прогрессия (an), разность которой равна 0,6 и a1=6,2. Найдите сумму первых шести её членов.
Дана арифметическая прогрессия (an), разность которой равна 0,6 и a1=6,2. Найдите сумму первых шести её членов.
Комментарии: