ОГЭ, Математика. Числовые последовательности: Задача №9E3EDA | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №9E3EDA

Задача №174 из 182
Условие задачи:

Выписаны первые три члена геометрической прогрессии:
-1024; -256; -64; …
Найдите сумму первых пяти её членов.

Решение задачи:

Так как надо вычислить сумму только первых пяти членов геометрической прогрессии, то легче просто найти b4 и b5 (b1, b2 и b3 уже известны из условия) и сложить их, чем воспользоваться формулой суммы. Вычисления по формуле будут очень затратны.
Поэтому найдем b4 и b5.
Найдем знаменатель прогрессии q.
bn=b1qn-1
b2=b1q2-1=b1q1=b1q
-256=1024*q
q=-256/(-1024)=0,25
Тогда:
b4=b3q=-64*0,25=-16
b5=b4q=-16*0,25=-4
S5=-1024-256-64-16-4=-1364
Ответ: -1364

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №560B8C

Геометрическая прогрессия (bn) задана условиями:
b1=-7, bn+1=3bn.
Найдите сумму первых пяти её членов.



Задача №1C5D03

Дана арифметическая прогрессия: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.



Задача №02D67E

Арифметическая прогрессия задана условиями a1=23, an+1=an-15. Найдите сумму первых 8 её членов.



Задача №CE8BFE

Последовательность задана формулой an=66/(n+1). Сколько членов этой последовательности больше 8?



Задача №244710

В геометрической прогрессии сумма первого и второго членов равна 48, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика