ОГЭ, Математика. Числовые последовательности: Задача №40CA2D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 7 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=-17,5*21=-35 (из условия задачи). А q=2.
Тогда S7=-35*(1-27)/(1-2)=-35*(1-128)/(-1)=-35*127=-4445
Ответ: -4445

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4793A5

Дана арифметическая прогрессия: 6; 10; 14; … . Найдите сумму первых пятидесяти её членов.



Задача №A4F005

Последовательность задана формулой an=70/(n+1). Сколько членов этой последовательности больше 6?



Задача №DC4719

Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.



Задача №19B940

Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.



Задача №83A4B5

Выписаны первые три члена арифметической прогрессии:
-6; 1; 8; ...
Найдите 6-й член этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика