В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 160. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=40
b1+b1q=40
b1(1+q)=40
2) b2+b3=160
b1q+b1q2=160
b1(q+q2)=160
b1(q+1)q=160
Подставляем вместо b1(q+1) значение из п. 1)
40q=160 => q=4
Подставляем значение q в уравнение 1):
b1(1+4)=40
b1=8
b2=8*4=32
b3=8*42=128
Ответ: b1=8, b2=32, b3=128
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), знаменатель которой равен 1/2, b1=2. Найдите сумму первых 4 её членов.
Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.
Дана арифметическая прогрессия (an), разность которой равна -8,1, a1=1,4. Найдите a6.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Комментарии: