Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=62,5*21=125 (из условия задачи). А q=2.
Тогда S4=125*(1-24)/(1-2)=125*(1-16)/(-1)=125*15=1875
Ответ: S4=1875
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
Дана арифметическая прогрессия: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.
Выписано несколько последовательных членов геометрической прогрессии:
…; -3; x; -27; -81; …
Найдите x.
Дана арифметическая прогрессия: 6; 10; 14; … . Найдите сумму первых пятидесяти её членов.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?
Комментарии: