В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=75
b1+b1q=75
b1(1+q)=75
2) b2+b3=150
b1q+b1q2=150
b1(q+q2)=150
b1(q+1)q=150
Подставляем из п. 1)
75q=150 => q=2, тогда b1(1+2)=75 => b1=25
b2=25*2=50
b3=25*22=100
Ответ: b1=25, b2=50, b3=100
Поделитесь решением
Присоединяйтесь к нам...
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 8 квадратов больше, чем в предыдущей. Сколько квадратов в 34-й строке?
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 160. Найдите первые три члена этой прогрессии.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых шестидесяти её членов.
Последовательность задана формулой an=34/(n+1). Сколько членов этой последовательности больше 6?
Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.
Комментарии: