Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
По условию задачи
геометрическая прогрессии задана условием: bn+1=3bn,
следовательно
b2=3b1, т.е. q=3.
Найдем
сумму:
S5=(b1(1-q5))/(1-q)=(-7(1-35))/(1-3)=(-7(1-243))/(1-3)=(-7*(-242))/(-2)=-7*121=-847
Ответ: b5=-847
Поделитесь решением
Присоединяйтесь к нам...
Записаны первые три члена арифметической прогрессии: -6; 1; 8. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Дана арифметическая прогрессия: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.
Геометрическая прогрессия задана условием bn=160*3n. Найдите сумму первых её 4 членов.
Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.
Записаны первые три члена арифметической прогрессии: -17; -14; -11. Какое число стоит в этой арифметической прогрессии на 81-м месте?
Комментарии: