ОГЭ, Математика. Числовые последовательности: Задача №F8A2D4 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По условию задачи геометрическая прогрессии задана условием: bn+1=3bn, следовательно
b2=3b1, т.е. q=3.
Найдем сумму:
S5=(b1(1-q5))/(1-q)=(-7(1-35))/(1-3)=(-7(1-243))/(1-3)=(-7*(-242))/(-2)=-7*121=-847
Ответ: b5=-847

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №897B0E

Записаны первые три члена арифметической прогрессии: -7; -1; 5; … Какое число стоит в этой арифметической прогрессии на 91-м месте?



Задача №D76689

В первом ряду кинозала 50 мест, а в каждом следующем на 1 больше, чем в предыдущем. Сколько мест в седьмом ряду?



Задача №31E2A2

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 12-й строке?



Задача №475D55

Последовательность (bn) задана условиями b1=-6, bn+1=-2*(1/bn). Найдите b5.



Задача №04E7C1

В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика