Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
По условию задачи
геометрическая прогрессии задана условием: bn+1=3bn,
следовательно
b2=3b1, т.е. q=3.
Найдем
сумму:
S5=(b1(1-q5))/(1-q)=(-7(1-35))/(1-3)=(-7(1-243))/(1-3)=(-7*(-242))/(-2)=-7*121=-847
Ответ: b5=-847
Поделитесь решением
Присоединяйтесь к нам...
Записаны первые три члена арифметической прогрессии: -7; -1; 5; … Какое число стоит в этой арифметической прогрессии на 91-м месте?
В первом ряду кинозала 50 мест, а в каждом следующем на 1 больше, чем в предыдущем. Сколько мест в седьмом ряду?
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 12-й строке?
Последовательность (bn) задана условиями b1=-6, bn+1=-2*(1/bn). Найдите b5.
В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Комментарии: