ОГЭ, Математика. Числовые последовательности: Задача №25E8A7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №25E8A7

Задача №70 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a50 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=-2-(-6)=4.
Подставляем все в формулу:
Sn=n*(2a1+(n-1)d)/2
S50=50*(2*(-6)+(50-1)*4)/2=50*(-12+196)/2=50*92=4600
Ответ: S50=4600

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E942BE

Дана арифметическая прогрессия: 6; 8; 10; … . Найдите сумму первых шестидесяти её членов.



Задача №60BDAB

Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.



Задача №32A9E3

Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?



Задача №323FCF

Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.



Задача №1C5D03

Дана арифметическая прогрессия: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика