Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.
Любой член
арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии:
an=a1+(n-1)d
Тогда девятый член можно представить в следующем виде:
a9=a1+(9-1)d
-15,7=a1+8d
-15,7-8d=a1 (1) - это уравнение нам понадобится позже.
Восемнадцатый член можно представить так:
a18=a1+(18-1)d
-22,9=a1+17d
Подставляем значение a1 из уравнения (1):
-22,9=-15,7-8d+17d
-22,9+15,7=-8d+17d
-22,9+15,7=-8d+17d
-7,2=9d
d=-0,8
Ответ: -0,8
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии:
…; 1,5; x; 24; -96; …
Найдите x.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 39-й строке?
Дана геометрическая прогрессия (bn) , знаменатель которой равен 5, b1=2/5. Найдите сумму первых 6 её членов.
Записаны первые три члена арифметической прогрессии: -4; 2; 8; … Какое число стоит в этой арифметической прогрессии на 81-м месте?
Последовательность (bn) задана условиями:
b1=7, bn+1=-3*(1/bn)
Найдите b3.
Комментарии: