Последовательность задана формулой an=66/(n+1). Сколько членов этой последовательности больше 8?
Для решения этой задачи надо решить неравенство:
66/(n+1)>8
66>8(n+1)
66>8n+8
58>8n
29>4n
7,25>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 7. Таким образом получается, что при n=1, 2, 3,..., 7, an будет больше 8.
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.
Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.
Записаны первые три члена арифметической прогрессии: -17; -14; -11. Какое число стоит в этой арифметической прогрессии на 81-м месте?
Комментарии:
(2015-04-23 15:50:59) Sonya: Спасибо огромнейшее! Много дней мучилась с этой темой и поняла только тогда, когда наткнулась на ваш сайт! Продолжайте работать в том же духе!