Последовательность задана формулой an=66/(n+1). Сколько членов этой последовательности больше 8?
Для решения этой задачи надо решить неравенство:
66/(n+1)>8
66>8(n+1)
66>8n+8
58>8n
29>4n
7,25>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 7. Таким образом получается, что при n=1, 2, 3,..., 7, an будет больше 8.
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.
Геометрическая прогрессия задана условиями b1=, bn+1=-3bn. Найдите b7.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 27-й строке?
Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых семидесяти её членов.
Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.
Комментарии:
(2015-04-23 15:50:59) Sonya: Спасибо огромнейшее! Много дней мучилась с этой темой и поняла только тогда, когда наткнулась на ваш сайт! Продолжайте работать в том же духе!