ОГЭ, Математика. Числовые последовательности: Задача №FED155 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Данная последовательность - арифметическая.
Разность d=an+1-an=3.
Любой член арифметической прогрессии можно выразить через a1:
an=a1+(n-1)d, тогда:
a10=a1+(10-1)d=5+9*3=5+27=32
Ответ: 32

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №BA0898

Геометрическая прогрессия задана условием bn=-480*(1/2)n. Найдите сумму первых её 7 членов.



Задача №3403C3

Последовательность задана условиями b1=-7, bn+1=-1/bn. Найдите b3.



Задача №68832A

Последовательность задана условиями a1=5, an+1=an-3. Найдите a10.



Задача №73C917

Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых шестидесяти её членов.



Задача №AB3627

В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 160. Найдите первые три члена этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика