Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
Рассмотрим каждое утверждение.
1) "На плоскости существует единственная точка, равноудалённая от концов отрезка", это утверждение неверно, т.к. любая точка, принадлежащая
серединному перпендикуляру, равноудалена от концов отрезка (
свойство серединного перпендикуляра).
2) "В любой треугольник можно вписать окружность", это утверждение верно (
свойство вписанной окружности).
3) "Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом". Это утверждение верно. По
свойству параллелограмма, противоположные стороны попарно равны. А раз смежные стороны равны, то и противоположные им стороны так же равны. Таким образом получается, что все четыре стороны такого параллелограмма равны. А это и есть определение ромба.
Ответ: 2) и 3)
Поделитесь решением
Присоединяйтесь к нам...
Медиана равностороннего треугольника равна 9√
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
140°.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
Комментарии: